Магнитные накопители иными словами накопители на магнитных лентах, речь идет про устройство жесткого диска, принцип работы жесткого диска, изобретение жестких дисков, изобретение дискеты, последние тенденции в отрасли, гибридные жесткие диски

Магнитные накопители 

Дисковые устройства делят на гибкие (Floppy Disk) и жесткие (Hard Disk) накопители и носители. Основным свойством дисковых магнитных устройств является запись информации на носитель на концентрические замкнутые дорожки с использованием физического и логического цифрового кодирования информации. Плоский дисковый носитель вращается в процессе чтения/записи, чем и обеспечивается обслуживание всей концентрической дорожки, чтение и запись осуществляется при помощи магнитных головок чтения/записи, которые позиционируют по радиусу носителя с одной дорожки на другую. Дисковые устройства, как правило, используют метод записи называемый методом без возвращения к нулю с инверсией (Not Return Zero – NRZ). Запись по методу NRZ осуществляется путем изменения направления тока подмагничивания в обмотках головок чтения/записи, вызывающее обратное изменение полярности намагниченности сердечников магнитных головок и соответственно попеременное намагничивание участков носителя вдоль концентрических дорожек с течением времени и продвижением по окружности носителя. При этом, совершенно неважно, происходит ли перемена магнитного потока от положительного направления к отрицательному или обратно, важен только сам факт перемены полярности.

Для записи информации, как правило, используют различные методы кодирования информации, но все они предполагают использование в качестве информационного источника не само направление линий магнитной индукции элементарной намагниченной точки носителя, а изменение направления индукции в процессе продвижения по носителю вдоль концентрической дорожки с течением времени. Такой принцип требует жесткой синхронизации потока бит, что и достигается методами кодирования. Методы кодирования данных не влияют на перемены направления потока, а лишь задают последовательность их распределения во времени (способ синхронизации потока данных), так, чтобы, при считывании, эта последовательность могла быть преобразована к исходным данным.


Дискета

Дискета — портативный магнитный носитель информации, используемый для многократной записи и хранения данных сравнительно небольшого объема. Этот вид носителя был особенно распространён в 1970-х — начале 1990-х годов. Вместо термина «дискета» иногда используется аббревиатура ГМД — «гибкий магнитный диск» (соответственно, устройство для работы с дискетами называется НГМД — «накопитель на гибких магнитных дисках», жаргонный вариант — флоповод от английского floppy-disk).


Обычно дискета представляет собой гибкую пластиковую пластинку, покрытую ферромагнитным слоем, отсюда английское название «floppy disk» («гибкий диск»). Эта пластинка помещается в пластмассовый корпус, защищающий магнитный слой от физических повреждений. Оболочка бывает гибкой или прочной. Запись и считывание дискет осуществляется с помощью специального устройства — дисковода (флоппи-дисковода).Дискеты обычно имеют функцию защиты от записи, посредством которой можно предоставить доступ к данным только в режиме чтения. Первая дискета была сконструирована в 1950 году сотрудником Токийского университета Йосиро Накамацу. Дискету, которая используется в компьютерах, он изобрел, когда ему было 24 года, и все права на её изготовление и использование купила компания "IBM", всего было куплено компанией у Йосиро Накамацу 16 лицензий. 

История

1971 — Первая дискета диаметром в 200 мм (8″) с соответствующим дисководом была представлена фирмой IBM. Обычно само изобретение приписывается Алану Шугерту, работавшему в конце 1960-х годов в IBM.
1973 — Алан Шугерт основывает собственную фирму Shugart Associates.
1976 — Алан Шугерт разработал дискету диаметром 5,25″.
1978 — фирма TEAC представляет первый в мире дисковод для чтения 5,25″-дискет.
1981 — Sony выводит на рынок дискету диаметром 3,5″ (90 мм). В первой версии объём составляет 720 килобайт (9 секторов). Поздняя версия имеет объём 1440 килобайт или 1,40 мегабайт (18 секторов). Именно этот тип дискеты становится стандартом (после того, как IBM использует его в своём IBM PC).Позже появились так называемые ED-дискеты (от англ. Extended Density — «расширенная плотность»), имевшие объём 2880 килобайт (36 секторов), которые так и не получили широкого распространения. Форматы
 Хронология возникновения форматов дискет

Следует отметить, что фактическая ёмкость дискет зависела от способа их форматирования. Поскольку кроме самых ранних моделей, практически все флоппи-диски не содержали жёстко сформированных дорожек, дорога для экспериментов в области более эффективного использования дискеты была открыта для системных программистов. Результатом стало появление множества не совместимых между собою форматов дискет даже под одними и теми же операционными системами. Например, для RT-11 и её адаптированных в СССР версий количество находящихся в обороте несовместимых форматов дискеты превышало десяток. (Наиболее известные — MX, MY).Дополнительную путаницу внёс тот факт, что компания Apple использовала в своих компьютерах Macintosh дисководы, применяющие иной принцип кодирования при магнитной записи, чем на IBM PC. В результате, не смотря на использование идентичных дискет, перенос информации между платформами на дискетах не был возможен до того момента, когда Apple внедрила дисководы высокой плотности SuperDrive, работавшие в обоих режимах.

Стандартные» форматы дискет IBM PC различались размером диска, количеством секторов на дорожке, количеством используемых сторон (SS обозначает одностороннюю дискету, DS — двухстороннюю), а также типом (плотностью записи) дисковода. Тип дисковода маркировался как SD — одинарная плотность, DD — двойная плотность, QD — четверная плотность (использовался в клонах, таких как Robotron-1910 — 5,25″ дискета 720 К , Amstrad PC, ПК Нейрон — 5,25″ дискета 640 К, HD — высокая плотность (отличался от QD повышенным количеством секторов), ED — расширенная плотность.8-дюймовые дисководы долгое время были предусмотрены в BIOS и поддерживались MS-DOS, но точной информации о том, поставлялись ли они потребителям, нет (возможно, поставлялись предприятиям и организациям и не продавались физическим лицам).Кроме вышеперечисленных вариаций форматов, существовал целый ряд усовершенствований и отклонений от стандартного формата дискет.Наиболее известные — 320/360 Кб дискеты Искра-1030/Искра-1031 — фактически представляли из себя SS/QD дискеты, но бут-сектор их был отмаркирован как DS/DD. В результате стандартный дисковод IBM PC не мог прочесть их без использования специальных драйверов, а дисковод Искра-1030/Искра-1031, соответственно, не мог читать стандарные дискеты DS/DD от IBM PC. 

 Специальные драйверы-расширители BIOS 800, pu_1700 и ряд других позволяли форматировать дискеты с произвольным числом дорожек и секторов. Поскольку дисководы обычно поддерживали от одной до 4 дополнительных дорожек, а также позволяли, в зависимости от конструкционных особенностей, отформатировать на 1-4 сектора на дорожке больше, чем положено по стандарту, эти драйвера обеспечивали появление таких нестандартных форматов как 800 Кб (80 дорожек, 10 секторов) 840 Кб (84 дорожки, 10 секторов) и т. д. Максимальная ёмкость, устойчиво достигавшаяся таким методом на 3,5″ HD-дисководах, составляла 1700 Кб.Эта техника была впоследствии использована в Windows 98, а также Микрософтовском формате дискет DMF, расширившим ёмкость дискет до 1,68 Мб за счёт форматирования дискет на 21 сектор в аналогичном IBMовском формате XDF.XDF использовался в дистрибутивах OS/2, а DMF — в дистрибутивах различных программных продуктов от Микрософт.Драйвер pu_1700 позволял также обеспечивать форматирование со сдвигом и интерливингом секторов — это ускоряло операции последовательного чтения-записи, но лишало совместимости даже при стандартном количестве секторов, сторон и дорожек.Наконец, достаточно частой модификацией формата дискет 3,5″ является их форматирование на 1,2 Мб (с пониженным числом секторов). Эта возможность обычно может быть включена в BIOS современных компьютеров. Такое использование 3,5″ характерно для Японии и ЮАР. В качестве побочного эффекта, активация этой настройки BIOS обычно даёт возможность читать дискеты, отформатированные с использованием драйверов типа 800.

Дальнейшее развитие

В настоящее время дискеты практически повсеместно вытеснены более емкими и обладающими гораздо меньшей удельной стоимостью видами накопителей. К таковым относятся, прежде всего, накопители на флэш-памяти, записываемые CD и DVD-диски (в особенности DVD-RAM), которые в целом, помимо низкой удельной стоимости, обладают следующими преимуществами перед дискетами:Прочность, Длительный срок хранения информации, Большее фактическое предельное количество циклов перезаписи (несмотря на то, что у магнитных носителей оно теоретически не ограничено. Большая ёмкость

Жесткие Диски

 Накопитель на жестком диске относится к наиболее совершенным и сложным устройствам современного персонального компьютера. Его диски способны вместить многие мегабайты информации, передаваемой с огромной скоростью. В то время как почти все элементы компьютера работают бесшумно, жесткий диск ворчит и поскрипывает, что позволяет отнести его к тем немногим компьютерным устройствам, которые содержат как механические, так и электронные компоненты. Основные принципы работы жесткого диска мало изменились со дня его создания. Устройство винчестера очень похоже на обыкновенный проигрыватель грампластинок. Только под корпусом может быть несколько пластин, насаженных на общую ось, и головки могут считывать информацию сразу с обеих сторон каждой пластины. Скорость вращения пластин (у некоторых моделей она доходит до 15000 оборотов в минуту) постоянна и является одной из основных характеристик. Головка перемещается вдоль пластины на некотором фиксированном расстоянии от поверхности. Чем меньше это расстояние, тем больше точность считывания информации, и тем больше может быть плотность записи информации. Взглянув на накопитель на жестком диске, вы увидите только прочный металлический корпус. Он полностью герметичен и защищает дисковод от частичек пыли, которые при попадании в узкий зазор между головкой и поверхностью диска могут повредить чувствительный магнитный слой и вывести диск из строя. Кроме того, корпус экранирует накопитель от электромагнитных помех. Внутри корпуса находятся все механизмы и некоторые электронные узлы. Механизмы - это сами диски, на которых хранится информация, головки, которые записывают и считывают информацию с дисков, а также двигатели, приводящие все это в движение. Диск представляет собой круглую пластину с очень ровной поверхностью чаще из алюминия, реже - из керамики или стекла, покрытую тонким ферромагнитным слоем. Диски изготовлены. Во многих накопителях используется слой оксида железа (которым покрывается обычная магнитная лента), но новейшие модели жестких дисков работают со слоем кобальта толщиной порядка десяти микрон. Такое покрытие более прочно и, кроме того, позволяет значительно увеличить плотность записи. Технология его нанесения близка к той, которая используется при производстве интегральных микросхем.

Количество дисков может быть различным - от одного до пяти, количество рабочих поверхностей, соответственно, вдвое больше (по две на каждом диске). Последнее (как и материал, использованный для магнитного покрытия) определяет емкость жесткого диска. Иногда наружные поверхности крайних дисков (или одного из них) не используются, что позволяет уменьшить высоту накопителя, но при этом количество рабочих поверхностей уменьшается и может оказаться нечетным. 

Магнитные головки считывают и записывают информацию на диски. Принцип записи в общем схож с тем, который используется в обычном магнитофоне. Цифровая информация преобразуется в переменный электрический ток, поступающий на магнитную головку, а затем передается на магнитный диск, но уже в виде магнитного поля, которое диск может воспринять и "запомнить". Магнитное покрытие диска представляет собой множество мельчайших областей самопроизвольной (спонтанной) намагниченности. Для наглядности представьте себе, что диск покрыт слоем очень маленьких стрелок от компаса, направленных в разные стороны. Такие частицы-стрелки называются доменами. Под воздействием внешнего магнитного поля собственные магнитные поля доменов ориентируются в соответствии с его направлением. После прекращения действия внешнего поля на поверхности диска образуются зоны остаточной намагниченности. Таким образом сохраняется записанная на диск информация. Участки остаточной намагниченности, оказавшись при вращении диска напротив зазора магнитной головки, наводят в ней электродвижущую силу, изменяющуюся в зависимости от величины намагниченности. Пакет дисков, смонтированный на оси-шпинделе, приводится в движение специальным двигателем, компактно расположенным под ним. Скорость вращения дисков, как правило, составляет 7200 об./мин. Для того, чтобы сократить время выхода накопителя в рабочее состояние, двигатель при включении некоторое время работает в форсированном режиме. Поэтому источник питания компьютера должен иметь запас по пиковой мощности. Теперь о работе головок. Они перемещаются с помощью прецизионного шагового двигателя и как бы "плывут" на расстоянии в доли микрона от поверхности диска, не касаясь его. На поверхности дисков в результате записи информации образуются намагниченные участки, в форме концентрических окружностей. Они называются магнитными дорожками. Перемещаясь, головки останавливаются над каждой следующей дорожкой. Совокупность дорожек, расположенных друг под другом на всех поверхностях, называют цилиндром. Все головки накопителя перемещаются одновременно, осуществляя доступ к одноименным цилиндрам с одинаковыми номерами.

(Материал 5 баллов жёсткий диск) 

 Что представлял собой первый накопитель на магнитных дисках? Первый жесткий диск был огромным шкафом, в котором находился пакет из 50 большущих пластин диаметром 24 дюйма (более 60 см) каждая. 

Диск носил имя RAMAC (Random Access Method of Accounting and Control) и был разработан в лаборатории IBM в калифорнийском городе Сан-Хосе (позднее ставшем сердцем Силиконовой долины). Пластины диска были покрыты «краской» из магнитного оксида железа — подобной той, что использовалась при строительстве знаменитого на весь мир моста Golden Gate в Сан-Франциско. 

Информационная емкость этого гиганта составляла 5 Мбайт (5 млн. байт), что по нынешним понятиям кажется смешной цифрой, но тогда это был High-End сегмента Enterprise. ;) Пластины были смонтированы на вращающемся шпинделе, а механический кронштейн (один!) содержал головки чтения и записи и перемещался вверх-вниз на вертикальном стержне, причем время доставки головки до нужной магнитной дорожки составляло менее одной секунды. 

Как видим, данная концепция во многом послужила прототипом для всех последующих жестких дисков — вращающиеся жесткие пластины («блины») с магнитным покрытием, концентрические дорожки записи, быстрый доступ к любой случайно выбранной дорожке (см. название RAMAC). Только теперь для каждой магнитной поверхности используется отдельная пара головок чтения-записи, а не общие на весь диск. Метод быстрого доступа к произвольному месту носителя (random access) произвел настоящую революцию в устройствах хранения, поскольку по сравнению с главенствующими тогда магнитными лентами позволял резко увеличить производительность при доступе. Один такой RAMAC весил почти тонну (971 кг) и сдавался в аренду по цене 35 000 долларов в год (тогда это равнялось стоимости 17 новых легковых автомобилей)! 

Следующим знаковым шагом IBM на этом поле стало создание накопителя IBM 3340. Этот «шкафчик» был уже меньше (высотой около метра),
и во время своего появления в июне 1973 году рассматривался как научное «чудо». При плотности магнитной записи 1,7 Мбит на квадратный дюйм он оснащался маленькими аэродинамическими головками (то есть головки впервые стали «парить» над вращающейся магнитной поверхностью под действием аэродинамических сил) и герметичной «коробкой» («банкой»), в которой помещались пластины с головками. Это защищало диски от пыли и загрязнений и позволяло кардинально уменьшить рабочее расстояние между головкой и пластиной (высоту «полета»), что привело к существенному росту плотности магнитной записи. IBM 3340 по праву считают отцом современных жестких дисков, поскольку именно на этих принципах они и строятся. Данные накопители имели несменяемую емкость 30 Мбайт плюс столько же (30 Мбайт) в сменном отсеке. 


Что и дало причину называть его «Винчестером» — по аналогии со знаменитой винтовкой 30-30 Winchester. Прогресс, кстати, коснулся не только конструкции и плотности записи, но и времени доступа, которое разработчикам удалось уменьшить до 25 миллисекунд (сравните это с 10-20 мс для современных куда более миниатюрных жестких дисков)! 
Позднее в этом же 1973 году IBM выпустила и первый в мире малогабаритный жесткий диск FHD50, основанный на принципах IBM 3340: в полностью закрытый корпус были заключены магнитные пластины с головками, причем головки не перемещались между пластинами. 
Кстати, само внедрение принципа «одна магнитная поверхность — одна пара головок» (то есть отказ от перемещения головок между пластинами) произошло чуть ранее: в 1971 году IBM выпустила модель 3330-1 Merlin (названную в честь мифического средневекового волшебника), где и применила этот принцип. К этому же событию относится и первое внедрение серво-технологии для позиционирования головок на пластинах, позднее трансформировавшуюся в TrueTrack Servo Technology от IBM (только по ней у IBM более 40 патентов). В современных дисках сервометки располагаются на расстоянии примерно 240 нм друг от друга и позволяют позиционировать головку на дорожке с точностью до 7 нанометров! Любопытно, что накопители типа IBM 3340 предназначались для коллективного пользования, то есть компании могли арендовать место на этом жестком диске по цене 7,81 доллара за мегабайт в месяц. Поэтому необходимость в малогабаритных индивидуальных накопителях тоже была. 
В 1979 году IBM ввела в обращение тонкопленочную технологию изготовления магнитных головок. Это позволило довести плотность магнитной записи до 7,9 млн. бит на квадратный дюйм.
В 1982 году компания Hitachi, Ltd. удивила мир, впервые выпустив накопитель H-8598 объемом 1 Гбайт, то есть, преодолев психологически значимый рубеж.
Этот накопитель емкостью 1,2 Гбайт насчитывал десять 14-дюймовых пластин и два набора головок чтения/записи в двухактуатороной конфигурации. При скорости чтения в 3 Мбайт в секунду (для сравнения — в настольных винчестерах такая скорость была достигнута лишь примерно десятилетие спустя) модель H-8598 работала на 87% быстрее, чем продукты предшествующего поколения. Спустя 6 лет Hitachi снова поставила рекорд, выпустив накопитель емкостью 1,89 Гбайт, использующий 8 дисков диаметром по 9,5 дюймов. Эта модель H-6586 стала первым диском класса мэйнфреймов, который человек мог переносить (весила около 80 кг). 

В 80-х годах прошлого века произошло еще два знаменательных события для индустрии магнитных накопителей. Сначала были выпущены компактные накопители форм-фактора 5,25 дюйма, которые помещались в соответствующие отсеки персональных компьютеров IBM PC (первый IBM 5100 Portable Computer был создан в 1975 году, и некоторое время изделия этой линейки 51х0, а позднее и знаменитые IBM PC 5150 использовали кассетные накопители). А затем в конце 80-годов американская компания Conner Peripherals, основанная в 1986 году основателем Seagate Финисом Коннером (Finis Conner), первой в мире выпустила на рынок 3,5-дюймовые жесткие диски с соленоидным мотором. Это открыло новую эру в индустрии магнитных накопителей — данный форм-фактор уже давно считается основным для жестких дисков, а более крупные (по габаритам) винчестеры вскоре прекратили выпускать как бесперспективные. 
IBM не раз была пионером в выпуске как миниатюрных винчестеров для ноутбуков, так и первой в мире представила в 1999 году однодюймовый жесткий диск — знаменитый Microdirve. 
Любопытно, что эти сверхминиатюрные диски использовали ту же скорость вращения пластин (3600 об./мин.), что и гигантские модели H-8598 и H-6586, но их вместительность и скорость при этом оказалась заметно выше! И этот прогресс был достигнут всего за какие-то 10-15 лет! Если сравнивать Microdrive с RAMAC, то в пространство последнего поместятся 323 тысячи «микродрайвов», а их суммарная емкость составит 2 500 терабайт! В 2005 году Hitachi GST выпустила уже 10-миллионный Microdrive. А первый 2,5-дюймовый винчестер был выпущен именно IBM — в 1991 году — и носил имя Tanba-1 (появление линейки Travelstar). Он имел объем 63 Мбайт, весил всего 215 грамм (3,5-дюймовые диски той поры весили раза в 3 больше). Хотя ударостойкость этих носимых малюток была никудышная по нынешним меркам — в 60 раз меньше, чем у современных аналогов.
В середине 90-х годов прошлого века IBM предложила еще как минимум две революционные технологии, которыми сейчас пользуются все производители жестких дисков. Во-первых, это магнитные головки на гигантском магниторезистивном эффекте (так называемые GMR heads, впервые появившиеся в дисках серии Deskstar 16GP в 1997 году), что позволило резко увеличить плотность записи (до 2,7 Гбит/кв.дюйм) и в последующее десятилетие наращивать плотность записи порой даже быстрее, чем «по закону Мура». :) Об этом я писал не раз, поэтому повторяться не стану. А во-вторых, это так называемый No-ID sector format (новый способ форматирования магнитных пластин), позволяющий увеличить плотность еще на 10%. Это также сейчас используется уже всеми производителями. 
Примерно тогда же стали резко возрастать скорости вращения магнитных пластин 3,5-дюймовых винчестеров — диски для ПК дружно «пошустрели» до 5400, а затем и до 7200 об./мин. (последнее — стандарт уже в течение десятилетия), а диски сегмента Enterprise раскрутились до 10 000, а затем и до 15 000 об./мин. Кстати, тоже не без помощи IBM, хотя Seagate считает, что именно она сделала первый в индустрии пятнадцатитысячник. ;) Интересно, однако, что именно компания Hitachi первой повысила скорость вращения выше 10 000 — до 12 000 об./мин. в своей модели DK3F-1 емкостью 9,2 Гбайт, выпущенной в 1998 году и побившей рекорды производительности. В ней использовались новые пластины уникального дизайна с диаметром 2,5 дюйма (позднее они стали стандартом в 15-тысячниках). 
В 2003 году IBM ввела в обращение так называемые фемто-слайдеры, размеры которых существенно меньше, чем прежде. Это позволило компании, ставшей уже Hitachi GST, выпустить несколько новых интересных серий дисков. Кстати, полет современных головок над поверхностью пластин по размерам пропорционален полету гигантского авиалайнера на высоте... 1 миллиметр над землей! 
Полувековой юбилей жесткого диска индустрия отметила и еще одним замечательным достижением — впервые за 50 лет появились накопители, которые используют иной принцип магнитной записи, чем был применен в RAMAC. А именно — перпендикулярную магнитную запись (PMR), когда магнитные домены ориентированы не вдоль, а поперек тонкой магнитной пленки на поверхности пластины. Hitachi GST продемонстрировала перпендикулярную магнитную запись еще в апреле 2005 года на образцах с плотностью записи 233 Гбит на кв. дюйм. Поперечная ориентация магнитных доменов в тонкой пленке (хотя и несколько более толстой, чем для аналогичных моделей с продольной записью) существенно увеличивает стабильность хранения информации, что необходимо для преодоления последствий так называемого суперпарамагнитного эффекта. Правда, не Hitachi или Toshiba, а Seagate стала первой компанией, которая выпустила в продажу первые накопители с PRM зимой 2006 года. Зато Hitachi оснастила свои первые PRM-диски, вышедшие летом 2006 года, уже вторым поколением PMR-технологии. Впрочем, отдавая дань времени, отметим, что для RAMAC рассматривалась как продольная, так и перпендикулярная магнитная запись, и тогда было отдано предпочтение продольной, что и определило развитие отрасли на целые полвека! :)
Теоретически PMR способна поднять плотность магнитной записи до 500 Гбит на кв. дюйм (это примерно 500 Гбайт для емкости 2,5-дюймового винчестера). Дальнейшие же планы по наращиванию плотности магнитной записи в Hitachi связывают с технологией так называемой patterned media (когда пленка исходно «гранулирована» до нужного уровня плотности записи), что позволит повысить емкость носителей еще на порядок. Далее придет очередь термически-активируемой магнитной записи с оцениваемым пределом плотности до 15 000 Гбит на кв. дюйм, что продлит жизнь накопителей на магнитных дисках года так до 2020-го, а то и дольше. 

Далее масштабы магнитных доменов переходят на атомарный уровень, и, возможно, в игру вступит спинтроника или появятся иные хорошие альтернативы магнитным накопителям.
Согласно исследованиям ученых калифорнийского университета в Беркли, сейчас каждый год создается около 400 000 терабайт новой информации только за счет электронной почты. Население в 6,3 миллиарда человек ежегодно создают по 800 Мбайт информации каждый, то есть около 5 000 000 терабайт новых данных в год, 92% которых хранится на жестких дисках. Сюда, разумеется, не входит многократно копируемая и тиражируемая информация. Индустриальные аналитики прогнозируют ежегодный рост продаж жестких дисков с 409 млн. накопителей в 2006 году до более 650 млн. дисков в 2010 году, то есть на 12-15% ежегодно. 
 Большая доля этого роста придется на бурно растущий рынок бытовой электроники, то есть скоро жесткий диск станет непременным атрибутом типичных домашних электронных устройств. А спрос, как известно, рождает предложение. Поэтому сомневаться в перспективности и жизнеспособности индустрии накопителей на магнитных дисках в обозримом будущем не приходится. 
Безусловно, развитие индустрии накопителей на жестких магнитных дисках осуществлялось силами не одного только Голубого Гиганта, и многие известные и мощные игроки приняли в этом посильное участие. Было время, когда компаний, выпускающих винчестеры, было больше, чем пальцев у человека (не только на руках ;)). Хотя сейчас их ряды стремительно редеют. :) И в ряду тех, кто первым выпустил тот или иной знаковый для рынка продукт или решение присутствуют и Seagate, и Western Digital, и Quantum, и ряд японских компаний. Однако слава первопроходца здесь, конечно, принадлежит IBM и ее правопреемнице Hitachi GST. И радует, что даже спустя полвека, преодолев на своем пути немалые трудности (и слияния), эта именитая команда разработчиков продолжает радовать потребителей новыми и часто революционными продуктами, оставаясь одной из немногих компаний в этой области, кто не паразитирует на чужих идеях и исследованиях, а генерирует свои собственные, вкладывая туда немалые финансы и оставаясь на самой вершине технологической пирамиды. 

Характеристики

Интерфейс — способ, использующийся для передачи данных. Современные накопители могут использовать интерфейсы ATA (AT Attachment, он же IDE — Integrated Drive Electronic, он же Parallel ATA), (EIDE), Serial ATA, SCSI (Small Computer System Interface), SAS, FireWire, USB, SDIO и Fibre Channel.
Ёмкость (англ. capacity) — количество данных, которые могут храниться накопителем. Ёмкость современных устройств достигает 1000 Гб. В отличие от принятой в информатике (случайно) системе приставок, обозначающих кратную 1024 величину (кило=1024, мега=1 048 576 и т. д.), производителями при обозначении ёмкости жёстких дисков используются кратные 1000 величины. Так, напр., «настоящая» ёмкость жёсткого диска, маркированного как «200 Гб», составляет 186,2 Гб.
Физический размер (форм-фактор) — почти все современные накопители для персональных компьютеров и серверов имеют размер либо 3,5, либо 2,5 дюйма. Последние чаще применяются в ноутбуках. Другие распространённые форматы — 1,8 дюйма, 1,3 дюйма и 0,85 дюйма
Время произвольного доступа (англ. random access time) — от 3 до 15 мс, как правило, минимальным временем обладают серверные диски (например, у Hitachi Ultrastar 15K147 — 3,7 мс[3]), самым большим из актуальных — диски для портативных устройств (Seagate Momentus 5400.3 — 12,5 [4]).
Скорость вращения шпинделя (англ. spindle speed) — количество оборотов шпинделя в минуту. От этого параметра в значительной степени зависят время доступа и скорость передачи данных. В настоящее время выпускаются винчестеры со следующими стандартными скоростями вращения: 4200, 5400 и 7200 (ноутбуки), 7200 и 10 000 (персональные компьютеры), 10 000 и 15 000 об./мин. (серверы и высокопроизводительные рабочие станции).
Надёжность (англ. reliability) — определяется как среднее время наработки на отказ (Mean Time Between Failures, MTBF). Cм. также Технология SMART. (S.M.A.R.T. (англ. Self Monitoring Analysing and Reporting Technology) — технология оценки состояния жёсткого диска встроенной аппаратурой самодиагностики, а также механизм предсказания времени выхода его из строя.)
Количество операций ввода-вывода в секунду — у современных дисков это около 50 оп./сек при произвольном доступе к накопителю и около 100 оп./сек при последовательном доступе.
Потребление энергии — важный фактор для мобильных устройств.
Уровень шума — шум, который производит механика накопителя при его работе. Указывается в децибелах. Тихими накопителями считаются устройства с уровнем шума около 26 дБ и ниже.
Сопротивляемость ударам (англ. G-shock rating) — сопротивляемость накопителя резким скачкам давления или ударам, измеряется в единицах допустимой перегрузки g во включённом и выключенном состоянии.
Скорость передачи данных (англ. Transfer Rate):
Внутренняя зона диска: от 44,2 до 74,5 Мб/с
Внешняя зона диска: от 74,0 до 111,4 Мб/с

Гибридные жёсткие диски: эволюция в мире HDD?

 Все мы прекрасно знаем, что жёсткий диск является «бутылочным горлышком» в системе ПК или лэптопа, и ощутимо снижает производительность системы в целом. Инженеры разрабатывали более скоростные интерфейсы для HDD, увеличивали скорость вращения шпинделя, оснащали свои продукты всё большим объёмом кэш-памяти, чтобы это самое «горлышко» расширить. Многие аналитики прогнозируют скорый закат hdd-эпохи и замену классических «винчестеров» флэш-накопителями. Да, это решение подразумевает уменьшенное энергопотребление и большую надёжность, но огромным минусом является очень высокая стоимость одного гигабайта информации (300 $ за 750 Гбайт 3.5" HDD или Flash-HDD ёмкостью 16-32 Гбайт за те же деньги). Но разработчиками было найдено промежуточное решение. Очередным витком в спирали эволюции «винчестеров» стало изобретение так называемых Hybrid Hard Drives (H-HDD), т.е гибридных жёстких дисков. По сути, мы имеем тот же жёсткий диск, который содержит дополнительную flash-память для наиболее часто используемых данных. 
Это решение позволяет помещать прикладные программы, которые часто запускаются, во временный буфер чтения-записи. Таким образом, шпиндельный двигатель жёсткого диска может быть остановлен, чтобы уменьшить потребление энергии в течение времен простоя. Первые шаги в разработке H-HDD предприняла компания Samsung. Коллегам с портала Tomshardware удалось протестировать «винчестер» Samsung SpinPointMH80, который имеет на борту 256 Мбайт флэш-памяти. Учитывая полученные данные, можно сделать вывод, что энергозависимость новых устройств упала на 70%-90%, гибридный НЖМД, используемый в ноутбуке, позволит сэкономить до 30 минут работы аккумулятора. Также возросла «ударопрочность» новых накопителей. Как ещё одно неоспоримое преимущество H-HDD, это более быстрая работа с Windows Vista, благодаря поддержке функции Ready Drive.


Источники:

  1. «Дисковые накопители информации», «Компьютеры Днепропетровска», №19 (1999) 
  2.  http://ru.wikipedia.org/wiki/Дискета
  3.  www.ixbt.com/storage/hdd50years.shtm
  4.  http://ru.wikipedia.org/wiki/Жёсткий_диск
  5.  www.media74.ru/news/617


 


 

Hosted by uCoz